Hormone-dependent interaction between the amino- and carboxyl-terminal domains of progesterone receptor in vitro and in vivo.
نویسندگان
چکیده
Full transcriptional activation by steroid hormone receptors requires functional synergy between two transcriptional activation domains (AF) located in the amino (AF-1) and carboxyl (AF-2) terminal regions. One possible mechanism for achieving this functional synergy is a physical intramolecular association between amino (N-) and carboxyl (C-) domains of the receptor. Human progesterone receptor (PR) is expressed in two forms that have distinct functional activities: full-length PR-B and the amino-terminally truncated PR-A. PR-B is generally a stronger activator than PR-A, whereas under certain conditions PR-A can act as a repressor in trans of other steroid receptors. We have analyzed whether separately expressed N- (PR-A and PR-B) and C-domains [hinge plus ligand-binding domain (hLBD)] of PR can functionally interact within cells by mammalian two-hybrid assay and whether this involves direct protein contact as determined in vitro with purified expressed domains of PR. A hormone agonist-dependent interaction between N-domains and the hLBD was observed functionally by mammalian two-hybrid assay and by direct protein-protein interaction assay in vitro. With both experimental approaches, N-C domain interactions were not induced by the progestin antagonist RU486. However, in the presence of the progestin agonist R5020, the N-domain of PR-B interacted more efficiently with the hLBD than the N-domain of PR-A. Coexpression of steroid receptor coactivator-1 (SRC-1) and the CREB binding protein (CBP), enhanced functional interaction between N- and C-domains by mammalian two-hybrid assay. However, addition of SRC-1 and CBP in vitro had no influence on direct interaction between purified N- and C-domains. These results suggest that the interaction between N- and C-domains of PR is direct and requires a hormone agonist-induced conformational change in the LBD that is not allowed by antagonists. Additionally, coactivators are not required for physical association between the N- and C-domains but are capable of enhancing a functionally productive interaction. In addition, the more efficient interaction of the hLBD with the N-domain of PR-B, compared with that of PR-A, suggests that distinct interactions between N- and C-terminal regions contribute to functional differences between PR-A and PR-B.
منابع مشابه
In silico Study of Toll-Like Receptor 4 Binding Site of FimH from Uropathogenic Escherichia coli
Introduction : The innate immune system as the first line of defense against the pathogens recognizes pathogen-associated molecular patterns (PAMPs) by Toll-Like Receptors (TLRs). Interaction of bacterial PAMPs by TLRs results in activation of innate and acquired immunity. FimH adhesin, a minor component of type 1 fimbriae encoded by Uropathogenic Escherichia coli (UPEC) is a PAMP of TLR4 tha...
متن کاملApplication of FITC for detecting the binding of antiangiogenic peptide to HUVECs
Angiogenesis is the generation of new blood vessels from the existing vasculature. The angiogenic programme requires the degradation of the basement membrane, endothelial cell migration and invasion of the extracellular matrix, with endothelial cell proliferation and capillary lumen formation before maturation and stabilization of the new vasculature. Angiogenesis is dependent on a delicate equ...
متن کاملThe Importance of α-CT and Salt bridges in the Formation of Insulin and its Receptor Complex by Computational Simulation
Insulin hormone is an important part of the endocrine system. It contains two polypeptide chains and plays a pivotal role in regulating carbohydrate metabolism. Insulin receptors (IR) located on cell surface interacts with insulin to control the intake of glucose. Although several studies have tried to clarify the interaction between insulin and its receptor, the mechanism of this interaction r...
متن کاملThe Importance of α-CT and Salt bridges in the Formation of Insulin and its Receptor Complex by Computational Simulation
Insulin hormone is an important part of the endocrine system. It contains two polypeptide chains and plays a pivotal role in regulating carbohydrate metabolism. Insulin receptors (IR) located on cell surface interacts with insulin to control the intake of glucose. Although several studies have tried to clarify the interaction between insulin and its receptor, the mechanism of this interaction r...
متن کاملAn additional region of coactivator GRIP1 required for interaction with the hormone-binding domains of a subset of nuclear receptors.
Transcriptional coactivators of the p160 family (SRC-1, GRIP1, and p/CIP) associate with DNA-bound nuclear receptors (NRs) and help the NRs to recruit an active transcription initiation complex to the promoters of target genes. Previous studies have demonstrated the importance of the NR interaction domain (NID) of p160 proteins containing three NR box motifs (LXXLL) for the interaction with the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular endocrinology
دوره 13 6 شماره
صفحات -
تاریخ انتشار 1999